MATH 221, Spring 2010.

Name

ID

1. Solve the following system of equations.

$$
\begin{array}{r}
x+2 y+z=1 \\
2 x+5 y+z=3 \\
y-z=1
\end{array}
$$

2. Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$. Find all matrices of the form $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $A M=M A$.
3. Suppose A and B are 3×3 invertible matrices where $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 5 & 2 \\ 0 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 3\end{array}\right]$.
(a) Solve the system of equations $\left(A^{-1} B^{-1}\right) X=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(b) Solve the system of equations $\left(A^{-1}\right)^{T} X=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
4. If A is a 2×2 matrix such that $A\left[\begin{array}{cc}3 & 2 \\ 4 & -1\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]=A\left[\begin{array}{cc}2 & 1 \\ 4 & -2\end{array}\right]$ find A.
5. (a) Find the determinant of $\left[\begin{array}{llll}1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & 3 & 1 & 2 \\ 2 & 4 & 9 & 1\end{array}\right]$
(b) Find all a so that $\left[\begin{array}{ccc}1 & 2 & a \\ 0 & 2 & 1 \\ 4 a & 0 & 1\end{array}\right]$ is invertible.
6. Let A, B and C be 3×3 matrices. If $\operatorname{det}(A)=2 \cdot \operatorname{det}(B)=3$ and $\operatorname{det}(C)=$ $634652645 / 12364737$ find the following
(a) $\operatorname{det}\left(2 A^{2} B^{-1}\right)$
(b) $\operatorname{det}\left(C^{-1} B C\right)$
7.

If $A=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$ and $\operatorname{det}(A)=2010$ find x_{1} and x_{2} where $A\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}a+2 b \\ e+2 f \\ i+2 j \\ m+2 n\end{array}\right]$.

